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Abstract. The luminosity measurement at the projected International Linear e+e− Collider ILC is planned
to be performed with forward Bhabha scattering with an accuracy of the order of 10−4. A theoretical pre-
diction of the differential cross-section has to include one-loop weak corrections, with leading higher order
terms, and the complete two-loop QED corrections. Here, we present the weak part and the virtual one-loop
photonic corrections. For the photonic corrections, the expansions in ε= (4−d)/2 are derived with inclusion
of the terms of order ε in order to match the two-loop accuracy. For the photonic box master integral in d
dimensions we compare several different methods of evaluation.

1 Introduction

Bhabha scattering,

e−(p1)+ e
+(p4)→ e

−(−p2)+ e
+(−p3) , (1)

was one of the first processes calculated in quantum the-
ory [1]. The complete virtual electroweak one-loop cor-
rections have been calculated in [2], later also in [3–11].
By now, Bhabha scattering may also be calculated with
automated tools for the evaluation of Feynman diagrams
and cross-sections as e.g. Feynarts [12, 13], grace [14] and
aITALC [15]. The electroweak corrections have to be con-
sidered together with hard bremsstrahlung corrections,
which usually are calculated by Monte Carlo programs;
see [16–20] and references therein. Dedicated studies for
experimentation at LEP may be found in [21, 22] and ref-
erences therein.

a Work supported in part by the European Community’s
Human Potential Programme under contract HPRN-CT-
2000-00149 ‘Physics at Colliders’ and by Sonderforschungsbe-
reich/Transregio 9 of DFG ‘Computergestützte Theoretische
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The preparation of the e+e− linear collider project ILC
(formerly also TESLA [23], and corresponding projects of
other regions) triggered again some interest in both wide
angle and small angle Bhabha scattering. The latter might
allow one to determine the luminosity with an unprece-
dented accuracy of 10−4. For this, one needs theoretical
predictions beyond one-loop accuracy in the extreme for-
ward scattering region where the cross-section peaks due
to the kinematical singularity of the photon propagators,
while the pure weak corrections might be sufficient in
one-loop approximation (with leading higher order terms
à la [7]). If a so-called Giga-Z option will be realized, high
Bhabha event rates are to be expected in the Z resonance
region also for larger scattering angles.
We write the matrix element squared as

|M|2 =
(
M(0)+M(1)+ . . .

)∗ (
M(0)+M(1)+ . . .

)

+
(
M(0)
γ + . . .

)∗ (
M(0)
γ + . . .

)
+ . . .

= |M(0)|
2

︸ ︷︷ ︸
O(α2)

+2Re(M(0)∗M(1))+ |M(0)
γ |
2

︸ ︷︷ ︸
O(α3)(

+|M(1)|
2
+2Re(M(0)∗M(2))

+2Re(M(0)
γ

∗
M(1)
γ )+ |M

(0)
γγ |2

)

︸ ︷︷ ︸
O(α4)

+O(α5) , (2)
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whereM(i) is the contribution to the i-loop order and the
subscripts γ and γγ indicate the emission of one or two
photons.
The QED contributions dominate by far, and two-loop

corrections are also needed. Several projects to determine
them in a systematic way are under way (see [24–29]
and references therein). A program with two-loop accu-
racy has to include also the complete one-loop matrix
elements squared, often regulated by an expansion in ε=
(d−4)/2, with a careful treatment of the resulting finite
terms in ε.1 For this, one may express the Feynman dia-
grams by scalar master integrals, which then have to be
known up to some positive order in ε. Thus, one has to
go beyond the usual technical demands of a pure one-loop
calculation.
In this article, we give a concise description of our ap-

proach to the one-loop contributions for a two-loop calcu-
lation of massive Bhabha scattering. As an introduction,
we present in Sect. 2 electroweak predictions which were
obtained for the ILC study [23, 32, 33]. The expressions
for the pure QED corrections up to order ε in terms of
a few scalar master integrals are derived in Sect. 3. Here
we retain the exact dependences on the electron mass.
The scalar master integrals are discussed in Sect. 4. For
the box master integral we compare several quite differ-
ent expressions, which are derived with the aid of a dif-
ference equation, a system of differential equations, and
the Mellin–Barnes technique, respectively. We close with
a short summary.

2 Electroweak one-loop corrections

One-loop corrections are the virtual part of the O(α3)
terms in (2). The calculation of electroweak corrections to
Bhabha scattering with the automated tool aITALC has
been described on several occasions [15, 32–35].
aITALC [15] uses the packages DIANA v.2.35/QGRAF
2 [36, 37] for the creation of the one-loop matrix elem-
ents, FORM 3.1 [38] for their expressions in terms of
scalar s, and LoopTools 2.1/FF [39, 40] for the numeri-
cal evaluation, including also soft bremsstrahlung. In one
respect we had to go beyond LoopTools 2.1: In order
to evaluate cross-sections in the neighborhood of the
Z resonance peak, one has to use Breit–Wigner prop-
agators in the s-channel, replacing m2Z by m

2
0 = m

2
Z −

imZΓZ . Accordingly, the γZ box function D0(t, s,m0) =
D0(m

2,m2,m2,m2, t, s, λ2,m2,m20,m
2), if used with

(γ, Z) in the s-channel, has been modified as in [41]:

D0(t, s,m0) =
xs

m1m4(t−m20)(1−x
2
s){

+2 log(xs)

(
log

(
1−x2s

)
− log

m0λ

m20− t− iε

)

+
π2

2
+Li(x2s)+ log

2(x2)+ log
2(x3)

1 A similar program was performed in [30, 31].

Fig. 1. Four-point function with
complex mass m0 and photon mass
regulator λ

−
∑
σ,ρ=±1

[Li(xsx
ρ
2x
σ
3 )

+ (log xs+logx
ρ
2+logx

σ
3 )

× log(1−xsx
σ
3x
ρ
2)]

}
. (3)

The diagram is shown in Fig. 1.
We use the LoopTools conventions s = (p1+p4)

2, t =
(p1+p2)

2, p2i =m
2
i =m

2, λ=mγ , with the following def-
initions for the x variables:

xs ≡−K(s+iε,m1,m4) , (4)

x2 ≡−K(m
2
2,m1,m0) , (5)

x3 ≡−K(m
2
3,m4,m0) , (6)

and the definition of the K-function (with one of the argu-
ments being complex)

K(z,m,m′)≡

⎧
⎪⎪⎨
⎪⎪⎩

1−

√
1− 4mm′

z−(m−m′)2

1+

√
1− 4mm′

z−(m−m′)2

z �= (m−m′)2,

−1 z = (m−m′)2 .

(7)

The photon mass is λ in LoopTools. The use of this scalar
box function is not only necessary in order to regulate the
γZ box contribution, but also for a proper compensation of
the corresponding soft photon infrared divergencies which
are proportional to the Born cross-section with a Breit–
Wigner Z propagator. The implementation is done in the
file fortran/src/d0wdd0.F of the aITALC package.

Table 1. Differential cross-sections in pbarn for Bhabha scat-
tering at

√
s=mZ . Born contribution and the O(α) correction

are shown; the maximum soft-photon energy is
√
s/10

cos θ Born EWSM O(α) EWSM

−0.9 0.12201×104 0.11767×104

−0.7 0.10099×104 0.95012×103

−0.5 0.85685×103 0.79246×103

0 0.73164×103 0.64561×103

+0.5 0.10701×104 0.91360×103

+0.7 0.16162×104 0.13917×104

+0.9 0.70112×104 0.63472×104

+0.99 0.62198×106 0.57186×106

+0.999 0.62612×108 0.57540×108

+0.9999 0.62666×1010 0.57822×1010
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Table 2. Differential cross-sections in pbarn for Bhabha scattering at
√
s= 500. Born contribution, the

O(α) correction and also a QED prediction are shown; the maximum soft-photon energy is
√
s/10

rad cos θ Born EWSM O(α) EWSM O(α) QED Nf = 9

2.691 −0.9 2.16999×10−1 1.93445×10−1 −10.85% 4.69800×10−1 116.50%
2.346 −0.7 2.30098×10−1 2.08843×10−1 −9.24% 5.03879×10−1 118.98%
2.094 −0.5 2.61360×10−1 2.38707×10−1 −8.67% 5.66238×10−1 116.65%
1.571 0 5.98142×10−1 5.46677×10−1 −8.60% 1.09322×100 82.77%
1.047 +0.5 4.21273×100 3.81301×100 −9.49% 5.13530×100 21.90%
0.795 +0.7 1.58240×101 1.43357×101 −9.41% 1.64548×101 3.99%
0.451 +0.9 1.89160×102 1.72928×102 −8.58% 1.76464×102 −6.71%
0.142 +0.99 2.06556×104 1.90607×104 −7.72% 1.91774×104 −7.16%
0.045 +0.999 2.08236×106 1.91624×106 −7.98% 1.92546×106 −7.53%
0.014 +0.9999 2.08429×108 1.91402×108 −8.17% 1.92270×108 −7.75%

In Tables 1 and 2 we provide numerical sample out-
puts at typical energies for several scattering angles. The
input quantities as well as the treatment of soft photons
are exactly the same as in [42]. The cross-section peaks in
the forward direction, due to the photon exchange in the
t-channel. In this kinematic region, the pure photonic cor-
rections will be dominating and we have to treat them with
higher accuracy than the rest of the electroweak correc-
tions. For the one-loop corrections, this means a determin-
ation of |M(1)|2 as part of theO(α4) terms in (2). Here one
needs the QED one-loop functions including terms of order
ε, because their interference with other terms of order 1/ε
contributes to the finite cross-section. This will be the main
concern of the rest of this article.

3 The massive QED cross-section in d
dimensions

The ten diagrams of Fig. 2 are the one-loop contributions
in pure QED.

Fig. 2. One-loop diagrams for the process e+e−→ e+e−

We decompose the full one-loop matrix element as
follows:

M1 = [γµ⊗γµ]F1 ,

M2 = [� p4⊗ � p2]F2 ,

M3 = [γµγνγρ⊗γργνγµ]F3 ,

M4 = [γµγν � p4⊗γνγµ � p2]F4 ,

M5 = ([� p4⊗1]+ [1⊗ � p2])F5 ,

M6 = ([γµ � p4⊗γµ]+ [γµ⊗γµ � p2])F6 ,

M7 = [1⊗1]F7 ,

M8 = [γµγν⊗γνγµ]F8 ,

M9 = ([γµγν � p4⊗γνγµ]+ [γµγν ⊗γνγµ � p2])F9 . (8)

The notation is short-hand for the s- and t-channel matrix
elements:

M(s)
k =Oi⊗OfFk(s, t)

= v̄(p4)Oiu(p1) · ū(−p2)Ofv(−p3)Fk(s, t) , (9)
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M(t)
k =Oe⊗Op [−Fk(t, s)]

= v̄(p4)Oev(−p3) · ū(−p2)Opu(p1) [−Fk(t, s)] .
(10)

Crossing the diagrams from the s-channel to the t-channel
results in the exchange of s and t and in an overall sign
change due to Fermi statistics; see (10). In general the first
six amplitudes are independent while F7 to F9 can be ex-
pressed in terms of them, but in slightly different ways for
the various cases under consideration. For this reason we
list them all.
With the form factors Fk(s, t) one may determine the

contributions from 2Re(M(0)∗M(1)) and from |M(1)|2 to
the differential cross-section (2). The interference ofM(0)

andM(1) yields e.g.

dσ

d cos θ
=
πα2

2s

9∑
j=1

[Bj(s, t)Fj(s, t)+Bj(t, s)Fj(t, s)] ,

(11)

with

B1 =s

{
4(1+ v)2+2

(
1− v+

1

v

)
−4vz2

+

(
1−
1

2v

)
z4)

}
,

B2 =s
2

{
−(1+ v)[(1+ v)2+ v2]+

1

2

[
(1+ v)2+ v(3+5v)

−
1

2v

]
z2−

3

4

(
2v−

1

2v

)
z4+

1

4

(
1−
1

2v

)
z6

}
,

B3 =s

{
8

(
3+3v+5v2

)
+
8

v
+8

(
3−5v+

3

v

)
z2

+2

(
5−
7

v

)
z4

}
,

B4 =s
2

{
−4(1+ v)v2−

(
2−6v2+

1

v

)
z2

+

(
3−4v+

3

v

)
z4+

(
1−
5

4v

)
z6

}
,

B5 =ms

{
−2

(
6v+4v2−

1

v

)
+

(
2+8v−

3

v

)
z2

−

(
2−
1

v

)
z4

}
,

B6 =ms

{
−4

(
3+
1

v

)
+2(1+2v)z2−

(
2−
1

v

)
z4

}
,

B7 =s

{
−
1

v
−2

[
1+ v−

3

4v

]
z2+

(
1−
1

2v

)
z4

}
,

B8 =s

{
−
4

v
+4

(
1−2v+

3

v

)
z2+

(
4−
5

v

)
z4

}
,

B9 =ms

{
−8

(
3v+4v2−

1

v

)
−4

(
3−8v+

6

v

)
z2

−2

(
4−
5

v

)
z4

}
, (12)

and

v =
t

s
, (13)

z =
4m2

s
. (14)

With the same formula (11), the Born cross-section, arising

from |M(0)|
2
, is obtained with

FBorn1 (s, t) =
1

s
, (15)

FBornj (s, t) = 0 for j > 1 . (16)

The contributions from |M(1)|2 to the cross-section are
rather lengthy and are not shown here explicitly; they
will be provided on the webpage [43]. There we give
also the expressions for the corresponding interferences in
d dimensions.
Before determining the form factors Fk(s, t), we discuss

now the various contributions. As mentioned we may re-
strict ourselves to the s-channel diagrams D1, D3, D6, D8,
D9:

Fj(s, t) =
2e2

(4π)d/2
(
F selfj +F vertj +F boxj

)
, j = 1, . . . , 9 .

(17)

The self-energy contributes to F1 only:

F self1 = FD11 . (18)

In a theory with several fermion flavors (with different
masses mf ), one has to sum this term over all flavors. The
vertices contribute to F1 and F5:

F vert1 = FD31 +F
D6
1 , (19)

F vert5 = FD35 = F
D6
5 , (20)

with FD61 = FD31 . The two form factors forM5 in (8) are
also equal but contribute to different structures there. The
situation for the box diagrams is a little more involved:

F boxj = cb
(
FD8j +FD9j

)
(21)

and the cb will be given in (40). As mentioned only six of
the nine form factors are independent. For the direct box
diagram D8 we find the following relations:

FD87 = 4m
2FD84 +2mF

D8
5 ,

FD88 =m
2FD84 ,

FD89 =mF
D8
4 −

1

2
FD86 . (22)
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There are further relations between the form factors FD8j
from the direct box D8 and the FD9j of the crossed box D9:

FD81 =−F
D9
1 +(4−6d)F

D9
3 ,

FD82 = F
D9
2 − (4−2d)F

D9
4 ,

FD83 = F
D9
3 ,

FD84 =−F
D9
4 ,

FD85 =−2dmF
D9
4 −F

D9
5 +dF

D9
6 ,

FD86 = F
D9
6 −4mF

D9
4 ,

FD87 = F
D9
7 − (4−2d)F

D9
8 ,

FD88 =−F
D9
8 ,

FD89 = F
D9
9 . (23)

Inverting (23), diagram D9 is obtained from D8 by ex-
changing t and u. As mentioned, the t-channel box D7 may
be obtained from D8 by simply exchanging t and s (and an
overall sign). Subsequently, diagram D10 results from D7
by inverting again (23) and exchanging now s and u. As
a consistency check, one can additionally obtain D10 from
D9 by s, t crossing. The inversion of the first six relations
of (23) yields FD91 to FD96 :

FD91 =−F
D8
1 +(4−6d)F

D8
3 ,

FD92 = F
D8
2 − (4−2d)F

D8
4 ,

FD93 = F
D8
3 ,

FD94 =−F
D8
4 ,

FD95 =−F
D8
5 −2dF

D8
9 ,

FD96 =−F
D8
6 −4F

D8
9 . (24)

In a next step, one gets in combination with (22)

FD97 =−6dm
2FD94 −2mF

D9
5 +2dmF

D9
6 ,

FD98 =m
2FD94 ,

FD99 =mF
D9
4 −

1

2
FD96 . (25)

We see that the relations for F7 in terms of amplitudes F1
to F6 are different for diagrams D8 and D9.
What remains now is to determine one form factor for

the self-energy, two form factors of the vertex, and six form
factors for one of the four box diagrams. This will be done
in two steps. First, we collect the form factor contribu-
tions from the Feynman diagrams D1 to D10, and in a sec-
ond step we have to add up additional contributions F a,rj
arising from counter-term insertions into the one-loop di-
agrams. The latter are formally of higher order, but it is
reasonable to discuss them here. So, effectively, (17) has to
be replaced by

Fj(s, t) =
2e2

(4π)d/2

[
F selfj +F vertj +F boxj

+
δm

m

(
F self,rj +F vert,rj +F box,rj

)]
,

j = 1, . . . , 9 . (26)

Additionally, charge renormalization δe/e will give an
overall factor, and there are also contributions FZj , F

Z,r
j

fromwave function renormalization. Both will be discussed
in Sect. 3.2.

3.1 The form factors

We will use the abbreviations for the five master integrals,
used here and in the following for the s-channel contribu-
tions:

A0 =A0(m) (27)

B0 =B0(0, 0; s) (28)

Bt =B0(m,m; t) (29)

C0 = C0(m, 0,m;m
2,m2, s) (30)

C1 = C0(0,m, 0;m
2,m2, s) (31)

D0 =D0(m, 0,m, 0;m
2,m2,m2,m2, t, s) , (32)

together with the function

C4 = C0(m, 0,m;m
2,m2, t) . (33)

The latter may be expressed by A0 and Bt; see (A.8). This
function contains the infrared singularities and we decided
to keep it explicitly as it is also done in LoopTools. Further,
we introduce

w =
u

s
, (34)

x=
1

1− 4m
2

s

, (35)

y =
1

1− 4m
2

t

. (36)

In terms of (27)–(33) the results for the amplitudes are
given in the following. They may also be obtained in
FORM format from [43]. The explicit expressions for the
master integrals are discussed in Sect. 4. The form factors
from self-energies and vertices are

F self1 = A0
4

s2

[
1

d−1
−1

]
+Bs

2

s

[
1

d−1
(1− z)−1

]
,

(37)

F vert1 = 2

(
−
A0

m2
1

s

[
1−x

d−3
−xz

]
+Bs

1

s
[x(1+ z)+d−4]

−
C0

(d−3)s
(1+x)

(
s−4m2

))
, (38)

F vert5 =A0
2

ms2
x

[
2

d−3
− (d−4)

]
+Bs

4m

s2
x[1− (d−4)] .

(39)

For the box diagrams we have

F boxj =
1

(vw)2
(
FD8j +F

D9
j

)
, (40)
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and the six independent box form factors for that are

FD81 = v

(
Ad[2v(v++2w+ vwx)+2zw+y]

−
4

s
[Bt(w+y+ v)z+B0vw(1+ vx)]

−
C4

d−3
[(1−3z)yz2− v ((1−6z)yz

−2(2−3z)z)− v2(4+(3y−10)z)−4v3]

+C1v

[
1

d−3
{2− z− z2+ v(2w++ z)}

−2(1− z)−2v(1−wx)

]

−D0
sv

2

{
1

d−3
[−2vv−v++ z(2− z− z

2)

+ v(1+4z)z−5v2z]

+2v(1−3z+2z2)+ v2(4−5z)

+2v3− (1− z)2z

})
, (41)

FD82 =
2v

s

(
Ad[w+2v(1+wx)+w−y]

−
2

s
[Bt(2v+w−y)+B0(1+2vx)w]

−
C4

d−3

[
y−w++ v(2v− z)− z

2
]

+C1

{
1

d−3

[
(1−2v)(1− z)−2v2

]

− (1+2vxz)(1− z)

+2v(v(1−xz)− z)

}

−D0
s

2

{
1

d−3
[(1− z)(1+w−2vz)

−2v2(w+ z)]+ v(1+2v(w++ z)−2z
2)

})
, (42)

FD83 =
v2w

2

(
−
C4

d−3
w++

1

d−3

{
C1−D0

s

2
w+

})
, (43)

FD84 =
v

s

(
−
Ad

2
[wy−+y]+

1

s
[Btyw−+B0w]

−
C4

d−3

[
v2−

v

2
(y−+ z)− (y−− z)

(
w+−

z

2

)]

−C1

[
1− z

2

d−4

d−3
−
w

d−3
− (1− z)

]

+D0
s

4

[
v−

w+

d−3
(w+w+− z)

])
, (44)

FD85 =
2vm

s

(
Ad[v+(1+ vx)w+(1+2w)y] (45)

−
2

s
[Bt(v+(1+2w)y)+B0(1+ vx)w]

−
C4

d−3
w+(y−−2wy− z)

−C1w

[
1

d−3
− (1+ vx+)

]
+D0

sw

2

[
w+

d−3
− v

])
,

FD86 =
2vm

s

(
Ad[v+2wy+ vwx]

−
2

s
[Bt(v+2wy)+B0vwx]

−
C4

d−3
(v− z)(2v+wy)

−C1v

[
1

d−3
+x(1+ v+−2z)

]

−D0
sv

2

[
1

d−3
(v− z)−1

])
, (46)

where we have further introduced

Ad =−
A0

m2
1

s

d−2

d−3
, (47)

x± = 1±x , (48)

y± = 1±y , (49)

v± = 1±v , (50)

w± = 1±w . (51)

The small mass limit is easily obtained by putting z =
0, x= y = 1.

3.2 Counter-term contributions

In this section we focus on the contributions originating
from renormalization: the charge counter term, the mass
counter term and the wave function renormalization are
given in arbitrary dimension. Not only their 1/ε and con-
stant terms are needed in order to render the amplitudes
from the diagrams in Fig. 2 finite, but also O(ε) terms
combine with divergent parts of the unrenormalized ampli-
tudes to give additional finite contributions. Similarly, of
course, in two-loop order the O(ε) contributions of the di-
agrams combine with the 1/ε terms of the counter terms to
give finite contributions.
First we consider the charge counter term. Each dia-

gram of Fig. 2 has at its vertices a factor e, the electric
charge. Renormalization in two-loops requires e to be re-
placed by e(1+ δe/e), with the charge counter term

δe

e
=−

e2

(4π)d/2
d−2

3

A0(m)

m2
. (52)

While the introduction of the charge counter term results
only in an overall factor, the introduction of the mass
counter term is more complicated. Every internal electron
propagator in Fig. 2 has to be replaced by

1

p2e−m
2(1+ δm/m)2

�
1

p2e−m
2

(
1+
2m2δm/m

p2e−m
2

)
,

(53)

with

δm

m
=

e2

(4π)d/2
(d−1)(d−2)

2(d−3)

A0(m
2)

m2
, (54)
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the electron mass counter term. This means that addi-
tional amplitudes FDk,rj are obtained from the one-loop
diagrams Dk: All fermion propagators are replaced accord-
ing to (53), but the higher powers of δm/m are dropped.
The contributions from the first powers of δm/m lead
to ‘dotted propagators’ with squared numerators. The
second recursion relation given in (A.7) reduces the re-
sulting Feynman integrals with dotted lines to master
integrals.
Since the mass renormalization conterterm δm/m con-

tains a 1/ε pole, the one-loop master integrals A0 and B0
etc., resulting from the diagrams, are needed to orderO(ε)
in order to ensure that all finite terms are taken into ac-
count properly. The relations between the nine amplitudes
of a given dotted diagram fulfil similar relations as those
for the undotted diagrams. The only differences are the
following:

FD8,r8 =m2FD8,r4 +FD8,r3 , (55)

FD8,r7 = FD9,r7 − (4−2d)FD9,r8 −4FD9,r3 , (56)

FD9,r7 =−6dm2FD9,r4 −2mFD9,r5

+2dmFD9,r6 +2dFD9,r3 , (57)

FD9,r8 =m2FD9,r4 −FD9,r3 . (58)

All other relations remain unchanged.
Now we present the contributions to the amplitudes for

the dotted diagrams:

F self,r1 = A0
4

s2
(d−2)xz−Bs

2

s
z[1− (d−3)x] , (59)

F vert,r1 = 2

(
A0
2

s2
x

[ (
−1

d−3
+6

1

d−5

)

− (d−4)(2x−1+(d−4))+7−4x

]

+A0
2

m2s

[
1+3

1

d−5

]

−Bs
1

s
xz[(d−4)(2x+(d−4))+2x]

+
1

(d−3)s
xz

(
s−4m2

)
C0

)
, (60)

F vert,r5 =−
A0

m

4

s2
x

×

[
−1

d−3
+(d−4)

(
1+(d−4)

(
1−
x

2

))
−3+2x

]

−Bs
4m

s2
x [(d−4)(x− (d−4)xz)+2xz]

−
4m

(d−3)s2
x(1+x)(s−4m2)C4 . (61)

For the box diagrams we have

F box,rj =
1

(vw)2

(
FD8,rj +FD9,rj

)
, (62)

and the six independent dotted box form factors for that
are

FD8,r1 =

A0

m2
1

s

{
(d−4)

[
2v2(v+(1+ v+)−xvw+2wz)

− zv
(
v(2+ v+)−wy(1+2w)+ z(v+y)

)
− z2y4w+

]

+
6

d−5

[
v2(v+(1+ v+)− vw+2wz)+

vz

2
(v(2w−3z)

+2y(w2+−w)
)
+
v2z2

2

]
+ 2v2

[
v(4+2w++3z)

+ 6
(
w2+−w

)
−2xvw

]

+
vz

2

[
w+−8v

(
1+ v++

3z

4

)
+y

(
3+17w+12w2

) ]

+
z2

4
[v(8v−2−4yw−) −4y

4(2+w)]

}
+A0

2

s2(d−3)

×
{
v[y−+w(1+9y)+2vz− (1−2w+y)z]+2wy

4z
}

−Bt
z

s

{
4(d−4)

[
v(v+yw+)+

yz

2
(v+yw+)

]

+ v
(
v+4v(1− z)+5yw−− z

)
+ z

(
v+2v2−2y(vw−y)

)}

−B0
vz(d−3)

s

{
2v(w+w+)

+2xvw(1+2v− z)+2y(w2+w2+)
}

+C4
2

d−3

{
v

[
v

(
vz(w++ v−

3z

2
)

+ [y−+w(1+9y)− (5−2y+2w(2−y))z]
z

4
+
z3

2

)

− [y−+w(1+9y−2y
4)]
z2

4
+(1−2w+y)

z3

4

]
−wy4

z3

2

}

+C1
vz

2

{
(d−4)

[
w+− v

(
1+2w+8w2−4v2

)

+4xv2w+2y
(
w2+w2+

)

− z
(
1−4vw++2v

2+2y
(
w2+w2+

))
−2z2v

]

−2v(w+2vv+−2xvw)+ z
(
w++(3v− z)(v+ v+)

)}

+D0vzs

{
(d−4)

×

[
vv2+−

z

2

(
v(2−2w+3v)−y

(
w2+w2+

))
+
z2

2
v

]

− v

(
2+(2v+w)w++

w

2

)
+
z

2

(
v(3+2w)−y(w2+w2+)

)}
,

(63)

FD8,r2 =

A0

m2
1

s2

{
(d−4)

[
2v

(
2v(2+wx−+ z)+4w+y−wy−

)

−2z
(
2v(v+y)+ (3+5w)y4

)]
−
2

d−3
vwy−

+
24v

d−5
[v+w+y]+2v

[
6v(3+ v)

− (3−10v+4vx−15y)w+12y
]
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−2z
[
4v2−2vwy+(6+9w)y4

]}

+A0
8

s3(d−3)

{
wy4+2v(v+wy+2y)

}

−Bt
4

s2

{
z(d−4)

[
2vy+(3+5w)y4

]

+ vwy−− z
(
2v(v+yw+)− (3+4w)y

4
)}

+B0
4v

s2

{
(d−4)[y−− z(1+2xvw)]+y−− z(1+2xvw)

}

−C4
2

s(d−3)

{
v2wy−vz[w(1−yy−)+2v(v+y(1+w+))]

+ z2[wy4+2vy(2+w)+2v2]
}

−C1
2v

s
{(d−4)[y−− z(1−2v(w+−xw)−y)]

+2zv(1−wx+)}+D0vz {(d−4)[2vw++y]−y++ z} ,

(64)

FD8,r3 =

−A0
d−2

d−3

2

s2
vwy−Bt

1

s
vwyz−C4

1

2(d−3)
vw(v− z)yz

+C1
1

2
v2wz−D0

1

4
sv2wz , (65)

FD8,r4 =

A0

m2
1

s2

{
1

d−3

[
−
v

2
(y−− z)+

(
v−
w

2
y3

)
yz

]

+
3v

d−5
[yw++ v]

+ (d−4)

[
1

2
vwy++ v(v+y)−

1

2
w−y

4z

]

+ v

[(
w+
z

2

)
(1+2y)+

7

2
y+3v−

1

2

]
+
1

2
(w−2)y4z

}

+Bt
1

s2

{(
v(−y−+(1+2y)z)−y

4z
)

− (d−4)y4z(1+ v+− z)
}

−B0(d−3)
v

s2
{y−+2vx(v+− z)(1− z)

−2v(y+ v− z)− z(1−2y)}

+C4
1

s

1

2(d−3)

{
(v(1+2z)−wy3z)y− (1− z)v

}

× (v− z)−C1
v

s

{
vz− (d−4)

×

[(
w+
1

2

)
y(1− z)+

1

2
(v−w)− vz

]}

+D0vz

{
y

4
(1−2z)+

1− z

4
+
1

2
vy+

− (d−4)
[y
4
(1−2z)−

v

2
y−

]}
, (66)

FD8,r5 =

A0

m

1

s2

{
(d−4)

[
−2v(v+w+xvw+yw+)+2zy

4w
]

−
6v

d−5
(yw++ v)

+2v

[
1−3v−2w−2xvw−y(4+3w)+

y−− z

d−3

]

−2z(v−2y4w)

}

+Bt
4m

s2

{
vy−+ z

(
(d−3)y4w− v

)}

+B0
4mv

s2
(d−3)

[
v−w+y−2vwx

(
1−
z

2

)]

+C4
2vm

s

1

d−3
(v− z)(y−− z)

+C1
2vm

s

{
(d−4)

[
2vw− v+w−y+ z(v+y

+xvw)
]
+ zxvw

}
−D02vm

{
z

2
(d−4)(v+y)

+ vv+w+
z

2
[y−− vw− z]

}
, (67)

FD8,r6 =

A0

m

1

s2

{
(d−4)

[
2v(v−xvw+y)−2zy4w−

]

+
6

d−5
[v(v+yw+)]

+2v (3v−2xvw+3y)+2zy (2v−y(2−w))

}

−
A0

m

2y

s2(d−3)
{vw+ z(wy−2v)}

−Bt
4m

s2

{
(d−4)zy4w−+yvw− zy(2v−y)

}

−B0
4m

s2
{
(d−3)(v(v+y)w+ zxv2w)

}

−C4
2my

s(d−3)

{
−wyz2+ v(w(v−y−z)−2(v− z)z)

}

+C1
2vm

s
{(d−4)[(v+y)w− z(v−w(vx−y))]

+vw− z(2v−xvw)}

+D0vm {(d−4)[z(v+yw)]+ vw(v+w)

+z(v(v−−2w)−yw)+ z
2v

}
. (68)

Finally we investigate wave function renormalization
for the electron self-energy:

Σ(p) =A(p2)+B(p2)(� p−m) . (69)

The wave function renormalization is given by

Z = 1+B+2m
∂A

∂p2

∣∣∣∣
p2=m2

= 1+ δZ , (70)

and the ‘undotted’ one then reads

δZ =−
e2

(4π)d/2

{
d−2

2

A0(m)

m2
+4m2DB0(0,m,m

2)

}

(71)

with

DB0(0,m,m
2) =

∂B0

∂p2

∣∣∣∣
p2=m2

. (72)
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The first part in (71) contains the UV divergence and the
second the IR divergence. Explicitly (72) reads

DB0(0,m,m
2) =

(d−2)

(d−3)

1

4m2
A0(m)

m2

=
1

(m2)3−
d
2

Γ
(
3− d2

)
(d−3)(d−4)

=
C0(m, 0,m;m

2,m2, 0)

(d−3)
. (73)

The UV divergent part of the wave function renormaliza-
tion cancels the UV divergence of the vertex, and a re-
maining IR singularity will be compensated by soft photon
radiation. It is worth mentioning that due to (73) we can
also write

δZ =−
δm

m
. (74)

We now discuss the dotted diagrams. They are UV fi-
nite and the divergent contributions to the “dotted” δZ
come only from the IR divergence. Therefore we write the
wave function renormalization from the dotted self-energy
δZr in terms ofDB0 (or C0, respectively):

δZr =−2
e2

(4π)d/2
m2
δm

m
(d−2)

[
6+4(d−4)− (d−4)2

]

×DB0(0,m,m
2) . (75)

The resulting form factors are

F
Z(,r)
j (s, t) =

4

s
δZ(r) . (76)

The true one-loop form factors contribute to the interfer-
ence with Born (as shown here explicitly) as well as to the
squared one-loop correction (not shown explicitly), while
the dotted form factors contribute only to the former.

4 The master integrals

The five master integrals of massive Bhabha scattering are
shown in Fig. 3. We collect here expressions for them valid
in d dimensions, but also the necessary ε-expansions.

4.1 One-point function

The simplest master integral is the tadpole:2

A0(m) =−
eεγE

iπd/2

∫
ddk

k2−m2

= Γ (1−d/2)(m2)
d−2
2

=−m2
[1
ε
+(1−Lm)+

ε

2

(
2+ ζ2−2Lm+L

2
m

)

+
ε2

6

(
6+3ζ2−2ζ3−3(2+ ζ2)Lm+3L

2
m−L

3
m

)]

+ . . . , (77)

2 We omit here and in the following the conventional scale
factor (4πµ2)ε; the scale factor would make the arguments of
logarithms dimensionless.

Fig. 3. The five one-loop MIs. External solid (dashed) lines de-
scribe on- (off-) shell momenta

with the abbreviation

Lm = ln(m
2) . (78)

Often, shorthand notation withm= 1 is used, and our tad-
pole formula then agrees with T1l1m as it is given in the
Mathematica file MastersBhabha.m located at [44]:

−A0(1) = T1l1m

=
1

ε
+1+

(
1+
ζ2

2

)
ε+

(
1+
ζ2

2
−
ζ3

3

)
ε2+ . . .

(79)

4.2 Two-point functions

The two-point functions are

B0(m,M ; p
2) =

eεγE

iπd/2

∫
ddk

(k2−m2)[(k+p)2−M2]
.

(80)

There are two of them,B0(0, 0; p
2) (coming from the reduc-

tion of box diagrams) and B0(m,m; p
2). In d dimensions,

they have been determined in [45] and in [46], respectively:

B0(0, 0; p
2) =

eεγE
√
π

(−p2)(2−
d
2 )

Γ
(
2− d2

)
Γ

(
d
2 −1

)

2d−3Γ
(
d−1
2

) ,

(81)

B0(m,m; p
2) = eεγE(m2)−(2−

d
2 )Γ

(
2−
d

2

)

× 2F1

[
1, 2− d2 ;
3
2 ;

p2

4m2

]
. (82)

The ε-expansion for B0(0, 0; p
2) is trivial, being

B0(0, 0; p
2) =

1

ε
+2− ln(−p2)

+ ε

[
4−
ζ2

2
−2 ln(−p2)+

1

2
ln2(−p2)

]
+ . . . ,

(83)
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and the one for B0(m,m; p
2) may be determined by using

a relation for contiguous hypergeometric functions

2F1

[
1, 2− d2 ;
3
2 ;

p2

4m2

]
=

1

1−2ε

{
1−2ε

(
1−

p2

4m2

)

× 2F1

[
1, 1+ ε ;
3
2 ;

p2

4m2

] }
, (84)

and then expanding the transformed hypergeometric func-
tion [46–49].3 The result is

B0(m,m; p
2) =

1

ε
+2−Lm+ r ln(x)

+ ε

[
4+
ζ2

2
−2Lm+

1

2
L2m

+ r

(
2 ln(x)− ln(x)Lm−2 ln(x) ln(1+x)

+
1

2
ln2(x)− ζ2−2Li2(−x)

)]

+ ε2
[
−4Lm+L

2
m+ ζ(2)−

1

2
ζ(2)Lm

+ r

(
−2ζ(2)+ ζ(2)Lm

−2ζ(3)−4Li2(−x)+2Li2(−x)Lm
−2Li3(−x)+4S1,2(−x)

+2 ln(1+x) (ζ(2)+2Li2(−x))

+2 ln(x) ln2(1+x)

− (4−2Lm) ln(x) ln(1+x)

− ln(x)2 ln(1+x)+
1

6
ln(x)3

+

(
1−
1

2
Lm

)
ln(x)2

+

(
4−2Lm+

1

2
L2m−

1

2
ζ(2)

)
ln(x)

)]

+ . . . , (85)

with

x=

√
1− 4m

2

p2
−1

√
1− 4m

2

p2
+1
≡
1− b

1+ b
, (86)

b=

√
p2

p2−4m2
, (87)

r =
1+x

1−x
=
1

b
. (88)

The ε-expansions may also be determined by the method
of differential equations [50, 51] and are then naturally ex-
pressed in terms of harmonic polylogarithms [44, 52]. With

3 We thank M. Kalmykov for the FORM code hyper-
geometric2F1 for an automatized derivation of the ε-expansion.

m= 1 we have [44]

B0(0, 0; p
2) = SE2l0m(x)

=
1

ε
+2+H[0, x]+2H[1, x]

+ ε
{
(4− ζ2/2+2H[0, x]+4H[1, x]

+H[0, 0, x]+2(H[0, 1, x]+H[1, 0, x])

+4H[1, 1, x])
}
+ . . . (89)

B0(m,m; p
2) = SE2l2m(x) (90)

=
1

ε
+2+

1+x

1−x
H[0, x]+ ε

{
((−8+8x+ ζ2

+3xζ2−4(1+x)H[0, x]

+4(1+x)H[−1, 0, x]−2H[0, 0, x]

−2xH[0, 0, x]) /(2(−1+x)))
}

+ ε2
{
[((1+x) (8−16/(1+x)

+3ζ2− (2ζ2)/(1+x)

+ (5ζ3)/3+(2ζ3)/(3(1+x))

−2ζ2H[−1, x]

+ ((−8+ ζ2)H[0, x]) /2+4H[−1, 0, x]

−2H[0, 0, x]−4H[−1,−1, 0, x]

+2H[−1, 0, 0, x]+2H[0,−1, 0, x]

−H[0, 0, 0, x])) /(−1+x)]
}
+ . . . .

With the Mathematica file HPL4.m., also located at [44],
the corresponding expressions in terms of polylogarithms
may be derived from (89) and (90).

4.3 Three-point functions

There are two three-point functions,C0(0,m, 0,m
2 ,m2, p2)

and C0(m, 0,m,m
2,m2, p2), with the definition (p =

p1+p2):

C0(m1,m2,m3,m
2,m2, p2) =−

eεγE

iπd/2

×

∫
ddk

[k2−m21][(k+p1)
2−m22][(k+p1+p2)

2−m23]
.

(91)

As shown in (A.8) C0(m, 0,m,m
2,m2, p2) is not a master

integral. The UV divergences of A0 and B0 in (A.8) can-
cel, and the factor 1/(d−4) represents the IR divergence of
this vertex function.4 Due to the additional factor of 1/ε,
we need A0 and B0 up to O(ε

2) for a C0 of order ε. As dis-
cussed above, a separate control of IR divergences is often
quite helpful in applications; therefore the explicit use of
C0(m, 0,m;m

2,m2, s) is recommended and we reproduce

4 The loop functions A0 and C0 used here deviate by an over-
all sign from the conventions of e.g. [39, 53].
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it here for completeness (see also (39) of [46]):

C0(m, 0,m,m
2,m2, p2)

=
−1

(p2−4m2)b

{
ln(x)

1

ε

−

(
ln(x)[ln(−p2)+ ln(−x)]+2Li2(−x)−

1

2
ln2(x)+ ζ2

)

+ ε

(
1

6
ln3(x)+

[
2Li2(−x)−

1

2
ln2(x)+ ζ2

]

×
[
ln(−p2)+ ln(−x)

]
+
1

2
ln(x)

[
ln(−p2)+ ln(−x)

]2

−
ζ2

2
ln(x)+4S1,2(−x)−2Li3(−x)−2ζ3

)
+ · · ·

}
. (92)

The vertex master integral C0(0,m, 0,m
2,m2, p2) in d

dimensions is finite for small ε; it has been derived in [54]:

C0(0,m, 0,m
2,m2, p2)

=−eεγE(m2)
d
2−3Γ

(
2−
d

2

){
1

2(d−3)
2F1

[
1, 1 ;
d−1
2 ;
1−

p2

4m2

]

−

√
πΓ

(
d−2
2

)

4Γ
(
d−1
2

)
(
−
p2

4m2

) d−4
2

2F1

[
1, d−22 ;
d−1
2 ;
1−

p2

4m2

]}
.

(93)

Concerning the expansion with respect to ε, the two coef-
ficients of the 2F1-functions depend on Lm and ln(−p2),
respectively. By eliminating Lm according to

Lm = ln(−p
2)− (2 ln(1−x)− ln(x)) , (94)

we obtain

C0(0,m, 0,m
2,m2, p2)

=−
1

p2b

{
1

2
ln2(x)+2Li2(x)+4ζ2− ε

(
1

3
ln(x)3−

1

2
ln(x)2

+
[
ln(−p2)−2 ln(1+x)

] [
1

2
ln2(x)+2Li2(x)+4ζ2

]

+ln(x) [2Li2(x)−2Li2(−x)+5ζ2]−2S1,2(x
2)

+4S1,2(−x)+8S1,2(x)+2Li3(−x)−5ζ3

)}
+ . . . (95)

In terms of HPLs, the function reads form= 1 [44]

C0(0,m, 0,m
2,m2, p2)

=−V3l1m[x]

=
x

(1−x2)
(4ζ2+H[0, 0, x]+2H[0, 1, x])

−
εx

(1−x2)

[
5ζ3+8ζ2H[−1, x]− ζ2H[0, x]

+8ζ2H[1, x]+2H[−1, 0, 0, x]+4H[−1, 0, 1, x]

+H[0, 0, 0, x]+2H[0, 0, 1, x]+2H[0, 1, 0, x]

+4H[0, 1, 1, x]+2H[1, 0, 0, x]+4H[1, 0, 1, x]
]
.

(96)

4.4 Four-point function

In LoopTools notation [39], the four-point master integral
in d dimensions with two photons in the s-channel is

Box(t, s) =D0(m
2,m2,m2,m2, t, s,m2, 0,m2, 0)

=
eεγE

iπd/2

∫
ddk

k2(k2+2kp4)(k+p1+p4)2(k2−2kp3)
.

(97)

We first give the ε-expansion obtained from a represen-
tation based on generalized hypergeometric functions;
see Sect. 4.4.1. Here we collect and complement results pre-
sented in [54] and [55]. Given the general result for the box
diagram in d dimensions, the coefficients of the ε-expansion
are naturally obtained in terms of one-dimensional inte-
grals. Alternatively we consider in Sect. 4.4.2 the method
of differential equations, which also yields the coefficients
in terms of one-dimensional integrals. These can, however,
systematically be presented in the form of generalized har-
monic polylogarithms, which makes this form quite attrac-
tive if one prefers ‘analytic’ results. Finally, in Sect. 4.4.3
we add a representation in terms of a two-fold Mellin–
Barnes integral, which appears to be quite elegant and has
the advantage that the integrand is free of singularities
even in the physical domain.

4.4.1 Hypergeometric functions

A closed expression for the box function valid in d dimen-
sions is known from [54]. In this case a first order differ-
ence equation with respect to the dimension d was solved.5

Other difference equations use as parameter the powers of
the propagators; see e.g. [56–58]. The general result of [54]
reads

e−εγEBox(t, s) =−
4md−4

s(t−4m2)
Γ

(
2−
d

2

)

×F2

(
d−3

2
, 1, 1,

3

2
,
d−2

2
;

t

t−4m2
, z

)

+
4md−4

(d−3)s(t−4m2)
Γ

(
2−
d

2

)

×F 1;2;11;1;0

[
d−3
2 :

d−3
2 ,1;1;

d−1
2 :

d−2
2 ;−;

z, 1−
4m2

s

]

−

√
π(−s)

d−4
2

2d−4m
√
s

Γ
(
d−2
2

)
Γ

(
2− d2

)

(t−4m2)Γ
(
d−1
2

)

×F1

(
d−3

2
, 1,
1

2
;
d−1

2
;

−
u

t−4m2
, 1−

s

4m2

)
,

(98)

5 We just mention that in [55] also a Feynman parameter rep-
resentation forD0 was given, including terms proportional to ε.
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with

z =
4m2

s

u

t−4m2
> 0 . (99)

The two photons are in the s-channel. Naturally the cuts
of the diagram are different for the t-channel case, which
means that the hypergeometric functions are to be evalu-
ated in different domains of analyticity. In (98), e.g., the
imaginary part of the diagram comes only from the coeffi-
cient (−s)(d−4)/2 of F1.
The Appell hypergeometric functions in terms of their

integral representations are

F1

(
d−3

2
, 1,
1

2
,
d−1

2
;x, y

)
=
d−3

2

∫ 1

0

dtt
d−5
2

(1− tx)
√
1− ty

,

(100)

F2

(
d−3

2
, 1, 1,

3

2
,
d−2

2
;x, z

)

=

∫ 1

0

1
2dt

√
1− t (1− tx)

d−3
2
2F1

(
1,
d−3

2
,
d−2

2
,
z

1− tx

)
,

(101)

and the Kampé de Fériet function is

F 1;2;11;1;0

[
d−3
2 :

d−3
2 ,1;1;

d−1
2 :

d−2
2 ;−;

z, y

]

=
d−3

2

∫ 1

0

dtt
d−5
2

1− ty
2F1

(
1,
d−3

2
,
d−2

2
, zt

)
. (102)

See [59] for (100), [55] for (102), and (101) is obtained from
the double integral representation of the F2-function [60].
With these representations we can derive the neeeded ε-
expansion. Due to Γ

(
2− d2

)
in the prefactors of (98), their

ε-expansion has to be done up to order ε2. This can be per-
formed by expanding the integrands. The numerical evalu-
ation of the one-dimensional integrals of the ε terms works
quite nicely in general. Nevertheless partial analytic results
can also be obtained, see e.g. (103) and (141). Based on [55]
we also give an expansion of the integrals for the limit of
small masses, i.e. −t� 4m2 (neglecting terms of O(m2)
and O(m2 ln(m2))).
For the F1-function the ε-expansion is easy except for

the analytic integration following the expansion. In [54] the
analytic integration has been performed for an F1-function
in which one of the arguments is O(ε), and in [55] the cor-
responding transformation to obtain such a form has been
described in detail. For the real part of F1 we thus have

F1

(
d−3

2
, 1,
1

2
,
d−1

2
;x, y

)
=

−
m
√
sb

d−3

2

[
Re

{
ln(B)

−ε
(
Li2(1−AB)+Li2

(
1−
B

A

)
−2Li2(1−B)

+
1

2
ln2A+π2

)

+ε2
(
Li3

(
A(1−AB)

A−B

)
−Li3

(
A(A−B)

1−AB

)

+2Li3

(
A(1−B)

1−AB

)
−2Li3

(
A(1−B)

A−B

)

+2Li3

(
1−B

A−B

)
−2Li3

(
1−B

1−AB

)

+2
[
Li2

(
A(A−B)

1−AB

)
−Li2

(
A(1−B)

1−AB

)

+Li2

(
1−B

A−B

)
−Li2(−A)

]
ln(A)

+

[
1

2
ln2(A)− ζ(2)

]
ln

(
B−A

1−AB

)
−
1

6
ln3

(
B−A

1−AB

)

+
1

2
ln(A) ln2

(
B−A

1−AB

))
+O(ε3)

}]
, (103)

with

A= x(s) =
a−1

a+1
∼−
m2

s
< 0 , (104)

B =−x(t) =
b−1

b+1
∼
m2

t
< 0 , (105)

a=

√
s−4m2

s
, (106)

b=

√
t

t−4m2
. (107)

Abbreviating (103) as (b∼ 1)

F1

(
d−3

2
, 1,
1

2
,
d−1

2
;x, y

)

=−
m
√
s
(d−3)

[
F 01 + εF

1
1 + ε

2F 21
]
, (108)

we obtain from (103) in the limit of small masses with r =
−t/s, 0≤ r ≤ 1

F 01 =− ln

(
−t

m2

)
,

F 11 =−
1

2
ln2

( s
m2

)
−2ζ(2)−Li2

(
1−
1

r

)
,

F 21 =−
1

6
ln3

( s
m2

)
−2ζ(2) ln

( s
m2

)

−Li3

(
1−
1

r

)
−2ζ(3) . (109)

For the F2- and Kampé de Fériet functions the same hyper-
geometric function 2F1 needs to be expanded:

6

2F1

(
1,
1

2
− ε, 1− ε, w

)

=
1

√
1−w

{
1−2ε ln(1+v)+2ε2

[
ln2(1+ v)+Li2(−v)

]}

≈
1

√
1−w

{
(1+ v)−2ε+2ε2Li2(−v)

}
+O(ε3) , (110)

6 Again a FORM code for the automatized derivation of the
ε-expansion by Kalmykov [49] has been used.
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with

v =
1−
√
1−w

1+
√
1−w

. (111)

For the F2-function we have to use

w =
z

1−xt
=

4v

(1+ v)2
, (112)

and correspondingly for the Kampé de Fériet function

w = zt=
4v

(1+ v)2
, (113)

and further in the integral (101)

(1+ v)−2ε

(1− tx)−ε
=

( z
4v

)ε
, (114)

and in the integral (102)

(t)−ε(1+ v)−2ε =
( z
4v

)ε
. (115)

It appears natural to introduce v as integration variable.
But a more precise numerical integration results from an
elimination of the singularity at t= 1 in (101) by the trans-
formation 1− t= u2. We then have in the considered order
for (101)

F2

(
d−3

2
, 1, 1,

3

2
,
d−2

2
;x, z

)

≈

∫ 1

0

du√
xu2+ 4m

2

s

[( z
4v

)ε
+2ε2Li2(−v)

]
, (116)

with

z

4v
=
x

4

(√
u2−

4m2

t
+

√
u2+

4m2

s

(
1−
4m2

t

))2
< 1 ,

(117)

and

v =

√
u2− 4m

2

t −

√
u2+ 4m

2

s

(
1− 4m

2

t

)

√
u2− 4m

2

t
+

√
u2+ 4m

2

s

(
1− 4m

2

t

) > 0 .

(118)

For the following we write

F2

(
d−3

2
, 1, 1,

3

2
,
d−2

2
;x, z

)
= F 02 + εF

1
2 + ε

2F 22 + · · · ,

(119)

where F 02 is obained as

F 02 =
1
√
x
ln

⎛
⎝1+

√
x
1−z

1−
√

x
1−z

⎞
⎠ , (120)

and the higher orders must be calculated from (116)
numerically. In the limit of small electron mass they are

F 02 = ln
( s
m2

)
,

F 12 =−
1

2
ln2

( s
m2

)
+ ζ(2)−Li2

(
1−
1

r

)
,

F 22 =
1

6
ln3

( s
m2

)
− ln

( s
m2

)(
ζ(2)−Li2

(
1−
1

r

))

+
1

2
ζ(3)+S1,2

(
1−
1

r

)
−Li3

(
1−
1

r

)
.

(121)

Similarly we perform the calculation for the Kampé de
Fériet function (102):

F 1;2;11;1;0

[
d−3
2 :

d−3
2 ,1;1;

d−1
2 :

d−2
2 ;−;

z, y

]

∼−
d−3

2

1
√
y− z

∫ 1

0

du

{[
1

1+ b1u
+

1

1− b1u

]
b1

−

[
1

1+ b2u
+

1

1− b2u

]
b2

}[( z
4v

)ε
+2ε2Li2(−v)

]
,

(122)

with v = v0u
2 and

v0 =
1−
√
1− z

1+
√
1− z

∼
z

4
, v1 =

1+
√
1− zy

1−
√
1− zy

, v2 =
1

v1
,

b1 =

√
v0

v1
� 1andb2 =

√
v0

v2
=
√
v0v1 . (123)

As above for the F2, we formally write for the Kampé de
Fériet function

F 1;2;11;1;0

[
d−3
2 :

d−3
2 ,1;1;

d−1
2 :

d−2
2 ;−;

z, y

]

=
d−3

2

(
K0+ εK1+ ε2K2+ · · ·

)
, (124)

whereK0 is obtained as

K0 =
1

b
ln

(
(1− b1)(1+ b2)

(1+ b1)(1− b2)

)
. (125)

Again, investigating the small mass approximation, we
have

K0 = ln
( s
m2

)
,

K1 = 3ζ(2) ,

K2 = 7ζ(3) . (126)

Finally we see that the expansion in ε of the F2- and
Kampé de Fériet functions becomes easy with the repre-
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sentations (116) and (122). To sum up our results, we have

Box(t, s) =−
2(m2)−ε

s(t−4m2)
Γ (ε)

[
F 02 + εF

1
2 + ε

2F 22 + · · ·
]

+
2(m2)−ε

s(t−4m2)
Γ (ε)

[
K0+ εK1+ ε2K2+ · · ·

]

+
2

(
−s
4

)−ε
s(t−4m2)

Γ (ε)
Γ

(
1
2

)

Γ
(
1
2 − ε

)Γ (1− ε)
×

[
Re

{
F 01 + εF

1
1 + ε

2F 21 + · · ·
}]
. (127)

As we see, in the limit of small electron mass the 1/ε terms
of the F2- and Kampé de Fériet functions cancel.
It is a very appealing fact to have the closed form of

the box function as an analytical expression in d dimen-
sions. So far, however, only partial analytic results were
obtained for the terms of order ε, but as we observe already
from (103), the results become quite lengthy if one prefers
to present them in this form. Beyond that simple expres-
sions in the small mass limit were obtained.

4.4.2 Harmonic polylogarithms

An alternative approach in terms of solving a differential
equation for the box [61] yields in a natural manner har-
monic polylogarithms. For the purpose of checking (in par-
ticular also numerically) and comparing, we repeated the
calculation of [61] and briefly sketch the procedure.
To be explicit, we consider the Bhabha box diagram

with two photons in the t-channel, as in [61], and the elec-
tron mass being set to 1; the analytical continuation to the
s-channel is evident here. One may derive the differential
operator

s
∂

∂s
=
1

2

{
pµ1 +p

µ
2 +

s

s+ t−4
(pµ2 −p

µ
3 )

}
∂

∂pµ2
,

(128)

which, applied to the one-loop box, yields a differential
equation:

dBox(s, t)

ds
=

1

2(−4+ s)2st(−4+ s+ t)[
(−4+ s)t(−2s2+4(−4+ t)

+ s(12+(−6+d)t))Box(x, y)

−2(−4+ s)(−4+d)(−4+ t)tV3l1m(y)

+4st(−3+d)SE2l2m(x)

−4(−3+d)(−4+ s)(−4+ s+ t)SE2l0m(y)

−2(−2+d)stT1l1m

]
, (129)

where

x=

√
1−4/s−1√
1−4/s+1

, (130)

y =

√
1−4/t−1√
1−4/t+1

, (131)

or

s=−
(1−x)2

x
, (132)

t=−
(1−y)2

y
. (133)

The subdiagrams T1l1m, SE2l2m, SE2l0m and V3l1m are
given in the preceding sections.
Expanding now the differential equation (129) in ε and

introducing the ansatz

Box = constB4l2m(x, y)

=
1

ε
B−1+B0+ εB1+ · · · , (134)

we may iteratively solve a system of differential equations
which differ only in the inhomogeneous terms:

dBj(x, y)

dx
=
1+x2

x(1−x2)
Bj(x, y)+Cj(x, y) . (135)

More details are described in the literature, e.g. in [61].
The result is

B−1 =
2xyH(0, x)

(1−x2)(1−y)2
=

2

st
√
1−4/s

H(0, x) ,

(136)

whereH(0, x)≡ ln(x) has been introduced; we also have

B0 =
2

st
√
1−4/s

H(0, x)
(
H(0, y)+2H(1, y)

)
,

(137)

and finally

B1 =
−2

st
√
1−4/s

{
G

(
−
1

y
, 0, 0, x

)
+G(−y, 0, 0, x)

−2
(
G

(
−
1

y
,−1, 0, x

)
+G(−y,−1, 0, x)

)

−
(
G

(
−
1

y
, 0, x

)
+G(−y, 0, x)−2H(−1, 0, x)

)

× [H(0, y)+2H(1, y)]

−
(
G

(
−
1

y
, x

)
−G(−y, x)+H(0, x)

)

× [H(0, 0, y)+2H(0, 1, y)]

−
(
5G

(
−
1

y
, x

)
−3G(−y, x)−

1

2
H(0, x)

−2H(−1, x)−4H(0, y)
)
ζ2

−2
(
H(1, y)H(0, 0, y)−H(0, y)H(0, 1, y)

)

−2
(
H(−1, 0, 0, x)−2H(−1,−1, 0, x)

)

−2H(0, x)[H(1, 0, y)+2H(1, 1, y)]

+H(0, 0, 0, y)+2H(1, 0, 0, y)−2ζ3

}
. (138)
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The functions G are generalized harmonic polyloga-
rithms [61, 62]. For the calculation of B1 we used the
relations

G(−y, 0, 0, 1) =−ζ2H(0, y)+H(0, 0,−1, y)−H(0, 0, 0, y),

G(−y,−1, 0, 1)+G

(
−
1

y
,−1, 0, 1

)

=−
3

2
ζ3− ζ2H(−1, y)+H(1, 0, 0, y)+H(0, 0,−1, y) .

(139)

There is a difference in the coefficient of the termH(0, x)ζ2
with respect to [61] due to different choices of normaliza-
tion; see also (136).
In order to check the results, we evaluated both rep-

resentations of B1 numerically (for the photons in the s-
channel). For s= 106, cos θ= 0.4,m= 1, agreement to nine
decimals was achieved:

B1(s= 10
6, cos θ = 0.4)

= 4.43779985×10−9−1.61529999×10−9i . (140)

The most difficult part of the numerical evaluation of (138)
is the calculation ofG(−y,−1, 0, x), in which case a princi-
pal value integral has to be performed with the above pa-
rameters. The imaginary part obtained from (138) there-
fore agrees only to seven decimals with (140). Follow-
ing [55], a simple formula for the imaginary part of B1 can
be derived, which is indeed simpler than what is obtained
from (138):

Im(B1) =
π

s
√
t(t−4)

×
(
2Li2(1+xy)+2Li2(1+y/x)

+4Li2(−y)+ ln
2(−x)+

π2

3

+2 ln(y)[ln(s)+2 ln(1+y)]
)
. (141)

This yields the imaginary part of the above number. The
numerical calculations were performed with Mathematica
and Maple, respectively.

4.4.3 Mellin–Barnes representation

Finally, we derive a Mellin–Barnes representation for the
QED box integral, again with two photons in the s-
channel. The Mellin–Barnes representation reads for fi-
nite ε

Box(t, s) =
eεγE

Γ [−2ε](−t)(2+ε)
1

(2πi)2

∫ +i∞

−i∞
dz1

∫ +i∞

−i∞
dz2

×
(−s)z1(m2)z2

(−t)z1+z2
Γ [2+ ε+ z1+ z2]

×Γ 2[1+ z1]Γ [−z1]Γ [−z2]

×Γ 2[−1− ε− z1− z2]
Γ [−2−2ε−2z1]

Γ [−2−2ε−2z1−2z2]
.

(142)

A derivation may be found e.g. in [63]. Starting from this
Mellin–Barnes integral, one has to perform an analytic
continuation in ε from a domain where the integral is regu-
lar into the vicinity of the origin. The singularity structure
near ε∼ 0 is obtained by means of the Mathematica pack-
age MB [64]. We obtain the result in terms of the following
one- and two-dimensional integrals:

I1 =
eεγE

st

1

2πi

∫ −12+i∞

− 12−i∞
dz1

(
m2

−t

)z1 Γ 3[−z1]Γ [1+ z1]
Γ [−2z1]

,

(143)

and

I2 =
eεγE

t2
1

(2πi)2

∫ − 34+i∞

− 34−i∞
dz1

(
−s

−t

)z1
Γ [−z1]

×Γ [−2(1+ z1)]Γ
2[1+ z1]

×

∫ − 12+i∞

− 12−i∞
dz2

(
m2

−t

)z2
Γ [−z2]

×
Γ 2[−1− z1− z2]

Γ [−2(1+ z1+ z2)]
Γ [2+ z1+ z2] . (144)

In terms of the conformally mapped variable

y =

√
1−4m2/t−1√
1−4m2/t+1

, (145)

the first integral I1 in (143) can be performed analytically
to yield the well-known result

I1 =
1

m2s

2y

1−y2
ln(y) . (146)

The final result for the Box then reads

Box(t, s) =−
1

ε
I1+ ln(−s)I1

+ ε

(
1

2

[
ζ(2)− ln2(−s)

]
I1−2I2

)
.

(147)

The first two terms are in evident agreement with (136)
and (137). The double integral I2 in (144) is not eas-
ily evaluated analytically, although we know the answer
from (138). The MB package yields fairly precise values in
the Euclidean region (s < 0). In the Minkowskian domain
(with s > 0 and (−s)z1 = sz1 exp(−iπz1)) our experience
with Mathematica is that the built-in function NIntegrate
with MaxRecursion → 12 gives easily a precision of nine
decimals. An alternative is the expansion at small m and
fixed value of t. With

mt =
−m2

t
, (148)

r =
s

t
, (149)

we have obtained a compact answer for I2 with the addi-
tional aid of XSUMMER [65]. The box contribution in this
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limit becomes

B1 =
1

st

{
4ζ3−9ζ2ln(mt)+

2

3
ln3(mt)+6ζ2ln(r)

− ln2(mt)ln(r)+
1

3
ln3(r)−6ζ2ln(1+ r)

+2ln(−r)ln(r)ln(1+ r)− ln2(r)ln(1+ r)

+2ln(r)Li2(1+ r)+2Li3(−r)

}
+O(mt) .

(150)

5 Summary

A calculation of Bhabha scattering for the luminosity
measurement at ILC is promoted by several groups, aim-
ing at a precision of 0.01%. With this study, we provide
a publicly available program for the one-loop electroweak
standard model corrections. Further, we collect all needed
expressions for the factorizing one-loop QED corrections.
These are necessary ingredients for the full two-loop calcu-
lation of Bhabha scattering.
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Appendix: Reduction of tensor and scalar
loop functions to master integrals

We strictly apply here dimensional regularization, i.e. in-
frared as well as ultraviolet singularities are given in terms
of only one pole in ε= (4−d)/2.
After using DIANA [36] and FORM 3.1 in order to ex-

press the Feynman diagrams in terms of tensor integrals,
we have to express the latter ones by scalar integrals: writ-
ing themth scalar amplitude of a diagram formally as

FDiagramm =
∑
n,l

I0n,l+
∑
i,n,l

pi,µI
µ
n,l+

∑
i,j,n,l

pi,µpj,νI
µν
n,l ,

(A.1)

where the momenta pi,µ are the ‘chords’, i.e. momenta in
the propagators ci = (k−pi)2−m2i , with k the loop mo-
mentum. The generically denoted n-point scalar, vector,
and tensor integrals I0n,l, I

µ
n,l, I

µ,ν
n,l will be transformed into

scalar integrals with shifted space-time dimension d, which
are then reduced to scalar integrals in generic dimension by
means of recursion relations [66–68]. The indices l in (A.1)
stand for ‘dots’ on lines l. The reduction to scalar integrals
reads

Iµn,j =

∫ d

kµ

n∏
r=1

c
−(1+δrj)
r =−

n−1∑
i=1

pµi nijI
[d+]
n,ij ,

Iµνn,l =

∫ d

kµkν

n∏
r=1

c−(1+δrl)r

=
n−1∑
i,j=1

pµi p
ν
j nijlI

[d+]2

n,ijl −
1

2
gµνI

[d+]
n,l , (A.2)

where [d+] is an operator shifting the space-time dimen-
sion by two units, nij = (1+δij)!, nijl = (1+δij+δil+δjl−
δijδilδjl)! and

In,ij... =

∫ d n∏
r=1

1

c
1+δri+δrj ...
r

,

∫ d

≡

∫
ddk

πd/2
(A.3)

is the original scalar integral with additional powers (dots)
of the ith and jth propagators. The case with no dots is
formally obtained by putting j = l = 0. Having reduced
the tensor integrals to scalar integrals, the generic space-
time dimension d needs to be re-established and the dots
to be removed. For this we use the recurrence relations
first proposed in [67], which are complementary to those
obtained via integration by parts [69, 70], and later simpli-
fied and extended to zero Gram determinants in [68]. With
Yij =−(pi−pj)2+m2i +m

2
j and the Cayley determinant

()n ≡

∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 Y11 Y12 . . . Y1n
1 Y12 Y22 . . . Y2n
...
...

...
. . .

...
1 Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣∣
, (A.4)

the so-called signed minors

(
j1 j2 . . .
i1 i2 . . .

)

n

are determinants

where the rows j1, j2, ... and columns i1, i2, ... are erased
from the Cayley determinant ()n.

7 Making successive use
of the following three recurrence relations leads to scalar
master integrals A0, B0, C0 andD0 in d dimensions:

()n νjj
+I
(d+2)
n =

[
−

(
j
0

)
n

+
n∑
k=1

(
j
k

)
n

k−
]
I
(d)
n ,

(A.5)(
0
0

)
n

νjj
+I
(d)
n =

[(
1+

n∑
i=1

νi−d

)(
0
j

)
n

−
n∑
k=1

(
0j
0k

)
n

(νk−1)

]
I
(d)
n

−
n∑

i,k, i�=k

(
0j
0k

)
n

νik
−i+I

(d)
n ,

(A.6)(
d−

n∑
i=1

νi+1

)
()n I

(d+2)
n =

[(
0
0

)
n

−
n∑
k=1

(
0
k

)
n

k−
]
I
(d)
n .

(A.7)

These relations are applied in a FORM program one
after the other: (A.5) reduces the dimension and the in-
dex of the jth line, (A.6) reduces the index of the jth line

7 Note here the additional overall sign (−1)j1+j2+...+i1+i2+....
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without changing the space-time dimension. The third re-
lation, (A.7), also reduces the space-time. The operators
i+, j+ raise the power of the corresponding propagator by
one unit, while k− reduces the power of the kth propagator
by one unit.
For Bhabha scattering in particular there is one sub-

tlety: there occur zero Gram determinants, and for this
case special care must be taken. The occurrence of zero
Gram determinants (e.g. ()n = 0) is discussed in [68].
Effectively a zero Gram determinant reflects the kine-

matical boundaries of phase space where a given n-point
function can be expressed through scalar integrals of lower
rank. A typical example of such simplifications is

C0(m, 0,m;m
2,m2, s)

=
1

s−4m2

[
d−2

d−4

A0(m
2)

m2
+
2d−3

d−4
B0(m,m; s)

]
.

(A.8)

Equation (A.8) means that this C0 is strictly speaking not
a master integral. For practical reasons, however, we in-
clude it in the list of master integrals; see the discussion
in Sect. 4.3. It is instructive to derive (A.8) in order to
demonstrate how the procedure works. Setting the mo-
menta of the incoming massive lines to p1 and p2 (the third
momentum q =−p1−p2, q2 = s) and the integration mo-
mentum on the massless line (no. 3), then the chords are,
respectively, −p1, p2 and 0. Correspondingly we have for
the Cayley determinant

()3 ≡

∣∣∣∣∣∣∣

0 1 1 1
1 2m2 −s+2m2 0
1 −s+2m2 2m2 0
1 0 0 0

∣∣∣∣∣∣∣
= s(s−4m2) ,

(A.9)

Apparently

(
0
0

)

3

= 0. Applying (A.7) with d→ d−2, we

obtain

(d−4) ()3 I
d
3 =−

3∑
k=1

(
0
k

)

3

k−I
(d−2)
3 , (A.10)

where

(
0
1

)

3

=

(
0
2

)

3

= 0 and

(
0
3

)

3

=−s(s−4m2).

Now we have expressed our three-point function al-
ready in terms of a two-point function with two massive
lines, however in d−2 dimensions, i.e.

(d−4)Id3 = 3
−I
(d−2)
3 (A.11)

and we must increase the dimension again with the inten-
tion to obtain an integral with nonvanishing Gram deter-
minant. The relevant relation to be used is (29) in [68]:

n∑
j=1

νjj
+I(d+2)n =−Idn , (A.12)

which in our case yields

I
(d−2)
2 =−

2∑
j=1

j+Id2 =−21
+Id2 , (A.13)

i.e. a two-point function in generic dimension with a dot
on one of the two massive lines and we have to remove

the dot from the line. In this case we have ()2 = −2s

and

(
0
0

)

2

= −s(s− 4m2), i.e. both Gram determinants

are nonvanishing and we can apply (A.6), which yields
straightforwardly (A.8).
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